{ [Info,B:Type]. [n:]. [A:n  Type]. [Xs:k:n  EClass(A k)].
  [f:Id  k:n  (A k)  B]. [F:Id  k:n  bag(A k)  bag(B)].
    [es:EO+(Info)]. [e:E]. [v:B].
      uiff(v  F|Loc; Xs|(e);vs:k:n  (A k)
                               ((k:n. vs[k]  Xs[k](e))
                                (v = (f loc(e) vs)))) 
    supposing x:Id. v:B. bs:k:n  bag(A k).
                (bag-member(B;v;F x bs)
                 vs:k:n  (A k)
                      ((k:n. bag-member(A k;vs k;bs k))  (v = (f x vs)))) }

{ Proof }



Definitions occuring in Statement :  simple-loc-comb: F|Loc; Xs| classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id int_seg: {i..j} nat: uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-member: bag-member(T;x;bs) bag: bag(T)
Definitions :  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  uall: [x:A]. B[x] set: {x:A| B[x]}  nat: squash: T isect: x:A. B[x] uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) universe: Type function: x:A  B[x] int_seg: {i..j} eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] bag: bag(T) quotient: x,y:A//B[x; y] apply: f a Id: Id all: x:A. B[x] iff: P  Q exists: x:A. B[x] equal: s = t bag-member: bag-member(T;x;bs) prop: implies: P  Q event-ordering+: EO+(Info) record+: record+ dep-isect: Error :dep-isect,  es-E: E event_ordering: EO classrel: v  X(e) simple-loc-comb: F|Loc; Xs| so_apply: x[s] true: True member: t  T int: le: A  B not: A false: False subtype_rel: A r B less_than: a < b ge: i  j  strong-subtype: strong-subtype(A;B) assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] rev_implies: P  Q eq_atom: eq_atom$n(x;y) eq_atom: x =a y record-select: r.x natural_number: $n subtype: S  T grp_car: |g| real: limited-type: LimitedType es-loc: loc(e) lambda: x.A[x] sq_stable: SqStable(P) CollapseTHENA: Error :CollapseTHENA,  RepUR: Error :RepUR,  lelt: i  j < k fpf: a:A fp-B[a] top: Top
Lemmas :  Error :es-interface-top,  subtype_rel_wf member_wf es-loc_wf iff_wf bag-member_wf bag_wf Id_wf eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf nat_wf classrel_wf int_seg_wf squash_wf sq_stable__classrel simple-loc-comb_wf

\mforall{}[Info,B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  (A  k)  {}\mrightarrow{}  B].
\mforall{}[F:Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)].
    \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:B].
        uiff(v  \mmember{}  F|Loc;  Xs|(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}k:\mBbbN{}n.  vs[k]  \mmember{}  Xs[k](e))  \mwedge{}  (v  =  (f  loc(e)  vs)))) 
    supposing  \mforall{}x:Id.  \mforall{}v:B.  \mforall{}bs:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k).
                            (bag-member(B;v;F  x  bs)
                            \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}vs:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}k:\mBbbN{}n.  bag-member(A  k;vs  k;bs  k))  \mwedge{}  (v  =  (f  x  vs))))


Date html generated: 2011_08_16-AM-11_38_30
Last ObjectModification: 2011_05_23-PM-06_30_08

Home Index