{ [A,B,S:Type]. [hs:S]. [nxt:S  A  (S  bag(B))].
    rec-dataflow-halt-state(A;B;hs;s,a.nxt[s;a]) 
    supposing a:A. (nxt[hs;a] = <hs, {}>) }

{ Proof }



Definitions occuring in Statement :  rec-dataflow-halt-state: rec-dataflow-halt-state(A;B;s0;s,a.next[s; a]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] function: x:A  B[x] pair: <a, b> product: x:A  B[x] universe: Type equal: s = t
Definitions :  iter_df_cons: iter_df_cons{iter_df_cons_compseq_tag_def:o}(as; a; P) rec_dataflow_ap: rec_dataflow_ap_compseq_tag_def iter_df_nil: iter_df_nil{iter_df_nil_compseq_tag_def:o}(P) pair: <a, b> limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] axiom: Ax empty-bag: Error :empty-bag,  apply: f a so_apply: x[s1;s2] rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) iterate-dataflow: P*(inputs) dataflow-ap: df(a) pi2: snd(t) list: type List lambda: x.A[x] prop: rec-dataflow-halt-state: rec-dataflow-halt-state(A;B;s0;s,a.next[s; a]) equal: s = t universe: Type uall: [x:A]. B[x] product: x:A  B[x] bag: Error :bag,  uimplies: b supposing a isect: x:A. B[x] member: t  T all: x:A. B[x] function: x:A  B[x] CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  rationals: so_apply: x[s] union: left + right or: P  Q append: as @ bs guard: {T} locl: locl(a) Knd: Knd l_member: (x  l) so_lambda: x.t[x] void: Void subtype: S  T top: Top pi1: fst(t) assert: b bool: fpf: a:A fp-B[a] quotient: x,y:A//B[x; y] implies: P  Q MaAuto: Error :MaAuto,  IdLnk: IdLnk Id: Id sq_type: SQType(T) let: let Complete: Error :Complete,  dataflow: dataflow(A;B)
Lemmas :  iterate-dataflow_wf rec-dataflow_wf dataflow_wf dataflow-ap_wf subtype_base_sq pi1_wf_top top_wf member_wf pi2_wf Error :empty-bag_wf,  rec-dataflow-halt-state_wf Error :bag_wf

\mforall{}[A,B,S:Type].  \mforall{}[hs:S].  \mforall{}[nxt:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  bag(B))].
    rec-dataflow-halt-state(A;B;hs;s,a.nxt[s;a])  supposing  \mforall{}a:A.  (nxt[hs;a]  =  <hs,  \{\}>)


Date html generated: 2011_08_10-AM-08_22_37
Last ObjectModification: 2011_03_22-PM-01_57_08

Home Index