{ [st1,st2:SimpleType].  (st-ap(st1;st2)  SimpleType) }

{ Proof }



Definitions occuring in Statement :  st-ap: st-ap(st1;st2) simple_type: SimpleType uall: [x:A]. B[x] member: t  T
Definitions :  top: Top st_const: Error :st_const,  st_arrow-range: Error :st_arrow-range,  st_arrow-domain: Error :st_arrow-domain,  eq_st: eq_st(st1;st2) false: False limited-type: LimitedType universe: Type prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q assert: b bnot: b int: unit: Unit union: left + right implies: P  Q bool: eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] st-ap: st-ap(st1;st2) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] simple_type: Error :simple_type,  equal: s = t member: t  T st_arrow?: Error :st_arrow?,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  tactic: Error :tactic
Lemmas :  member_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf assert_wf Error :st_arrow?_wf,  bool_wf Error :simple_type_wf,  ifthenelse_wf eq_st_wf Error :st_arrow-domain_wf,  Error :st_arrow-range_wf,  Error :st_const_wf,  top_wf

\mforall{}[st1,st2:SimpleType].    (st-ap(st1;st2)  \mmember{}  SimpleType)


Date html generated: 2011_08_17-PM-05_00_55
Last ObjectModification: 2011_02_04-PM-03_38_29

Home Index