{ [st1,st2:SimpleType].
    (st-kind(st1) = st-kind(st2)) supposing ((0 < st-kind(st2)) and st1  st2) }

{ Proof }



Definitions occuring in Statement :  st-kind: st-kind(st) st-instance: st1  st2 simple_type: SimpleType uimplies: b supposing a uall: [x:A]. B[x] less_than: a < b natural_number: $n int: equal: s = t
Definitions :  st_class-kind: st_class-kind(x) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def st_list-kind: st_list-kind(x) simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def st_union-left: st_union-left(x) st_union-right: st_union-right(x) simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def st_prod-fst: st_prod-fst(x) st_prod-snd: st_prod-snd(x) simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def st_arrow-domain: st_arrow-domain(x) st_arrow-range: st_arrow-range(x) simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def false: False eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind: simple_type_ind st-similar: st-similar(st1;st2) st-subst: st-subst(subst;st) st_const-ty: st_const-ty(x) st_var?: st_var?(x) st_const?: st_const?(x) st_arrow?: st_arrow?(x) st_prod?: st_prod?(x) st_union?: st_union?(x) st_list?: st_list?(x) st_class?: st_class?(x) st_var-name: st_var-name(x) simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def st_class: st_class(kind) st_list: st_list(kind) st_union: st_union(left;right) st_prod: st_prod(fst;snd) st_arrow: st_arrow(domain;range) st_const: st_const(ty) st_var: st_var(name) set: {x:A| B[x]}  universe: Type atom: Atom union: left + right implies: P  Q natural_number: $n eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] assert: b exists: x:A. B[x] rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] uimplies: b supposing a prop: isect: x:A. B[x] axiom: Ax int: st-kind: st-kind(st) equal: s = t less_than: a < b st-instance: st1  st2 simple_type: SimpleType member: t  T Auto: Error :Auto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  st_class_wf st-instance_wf st_var_wf st_list_wf st_union_wf st_prod_wf st_arrow_wf st_const_wf simple_type_wf st-kind_wf

\mforall{}[st1,st2:SimpleType].    (st-kind(st1)  =  st-kind(st2))  supposing  ((0  <  st-kind(st2))  and  st1  \mleq{}  st2)


Date html generated: 2011_08_17-PM-04_59_36
Last ObjectModification: 2011_02_07-PM-04_26_59

Home Index