{ [x:SimpleType]. st_const-ty(x)  Type supposing st_const?(x) }

{ Proof }



Definitions occuring in Statement :  st_const-ty: st_const-ty(x) st_const?: st_const?(x) simple_type: SimpleType assert: b uimplies: b supposing a uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  true: True simple_type_ind: simple_type_ind apply: f a it: false: False simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def set: {x:A| B[x]}  product: x:A  B[x] atom: Atom union: left + right rec: rec(x.A[x]) implies: P  Q function: x:A  B[x] all: x:A. B[x] st_const?: st_const?(x) uall: [x:A]. B[x] universe: Type st_const-ty: st_const-ty(x) axiom: Ax uimplies: b supposing a isect: x:A. B[x] assert: b prop: simple_type: SimpleType equal: s = t member: t  T
Lemmas :  assert_wf st_const?_wf simple_type_wf true_wf false_wf

\mforall{}[x:SimpleType].  st\_const-ty(x)  \mmember{}  Type  supposing  \muparrow{}st\_const?(x)


Date html generated: 2011_08_17-PM-04_45_03
Last ObjectModification: 2011_02_06-PM-04_10_37

Home Index