{ [es:EO]. [dom:E  ]. [e:E].  (sub-es-pred(es;dom;e)  {e:E| (dom e)} ?) \000C}

{ Proof }



Definitions occuring in Statement :  sub-es-pred: sub-es-pred(es;dom;e) es-E: E event_ordering: EO assert: b bool: uall: [x:A]. B[x] unit: Unit member: t  T set: {x:A| B[x]}  apply: f a function: x:A  B[x] union: left + right
Definitions :  axiom: Ax sub-es-pred: sub-es-pred(es;dom;e) unit: Unit apply: f a assert: b set: {x:A| B[x]}  union: left + right event_ordering: EO es-E: E all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t bool: member: t  T universe: Type Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  Id: Id es-causl: (e < e') so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) strong-subtype: strong-subtype(A;B) inl: inl x  uimplies: b supposing a es-pred: pred(e) it: inr: inr x  subtype_rel: A r B fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  pair: <a, b> bfalse: ff btrue: tt uiff: uiff(P;Q) and: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q es-first: first(e) bnot: b true: True squash: T es-locl: (e <loc e') limited-type: LimitedType real: grp_car: |g| subtype: S  T minus: -n add: n + m subtract: n - m void: Void false: False not: A natural_number: $n prop: le: A  B ge: i  j  int: less_than: a < b nat: implies: P  Q product: x:A  B[x] exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ infix_ap: x f y record-select: r.x MaAuto: Error :MaAuto,  SplitOn: Error :SplitOn,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  nat_wf member_wf unit_wf assert_wf ge_wf nat_properties es-locl-swellfnd le_wf es-locl_wf iff_weakening_uiff eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot es-first_wf bfalse_wf subtype_rel_wf it_wf bnot_wf ifthenelse_wf es-pred_wf false_wf true_wf uiff_inversion es-causl_wf Id_wf es-pred-locl event_ordering_wf bool_wf es-E_wf

\mforall{}[es:EO].  \mforall{}[dom:E  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[e:E].    (sub-es-pred(es;dom;e)  \mmember{}  \{e:E|  \muparrow{}(dom  e)\}  ?)


Date html generated: 2011_08_16-AM-11_11_50
Last ObjectModification: 2011_06_20-AM-00_19_42

Home Index