{ [M:Type  Type]
    EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2)) 
    supposing Continuous+(P.M[P]) }

{ Proof }



Definitions occuring in Statement :  system-equiv: system-equiv(T.M[T];S1;S2) System: System(P.M[P]) strong-type-continuous: Continuous+(T.F[T]) equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] equiv_rel: EquivRel(T;x,y.E[x; y]) system-equiv: system-equiv(T.M[T];S1;S2) member: t  T ext-eq: A  B and: P  Q process-equiv: process-equiv refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] int_seg: {i..j} so_lambda: x.t[x] implies: P  Q lelt: i  j < k le: A  B prop: not: A false: False System: System(P.M[P]) component: component(P.M[P])
Lemmas :  nat_wf process-equiv-is-equiv length_wf1 component_wf int_seg_properties select_wf pMsg_wf int_seg_wf System_wf Process_wf process-equiv_wf le_wf Id_wf system-equiv_wf strong-type-continuous_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2))  supposing  Continuous+(P.M[P])


Date html generated: 2011_08_16-PM-06_51_47
Last ObjectModification: 2011_06_18-AM-11_06_30

Home Index