{ y:. (w:{| (w = ((3 * y) * (y + (3 * y))))}) }

{ Proof }



Definitions occuring in Statement :  all: x:A. B[x] sq_exists: x:{A| B[x]} multiply: n * m add: n + m natural_number: $n int: equal: s = t
Definitions :  strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) test1 lambda: x.A[x] member: t  T subtype_rel: A r B sqequal: s ~ t sq_exists: x:{A| B[x]} set: {x:A| B[x]}  equal: s = t int: uall: [x:A]. B[x] uimplies: b supposing a isect: x:A. B[x] sq_type: SQType(T) function: x:A  B[x] all: x:A. B[x]
Lemmas :  test1 subtype_base_sq

\mforall{}y:\mBbbZ{}.  (\mexists{}w:\{\mBbbZ{}|  (w  =  ((3  *  y)  *  (y  +  (3  *  y))))\})


Date html generated: 2011_08_17-PM-05_57_25
Last ObjectModification: 2011_02_03-PM-04_27_26

Home Index