{ [M:Type  Type]
    r:pRunType(P.M[P]). e1,e2:runEvents(r).
      (e1 = e2)  (e1 run-lt(r) e2)  (e2 run-lt(r) e1) 
      supposing run-event-loc(e1) = run-event-loc(e2) }

{ Proof }



Definitions occuring in Statement :  run-lt: run-lt(r) run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) Id: Id uimplies: b supposing a uall: [x:A]. B[x] infix_ap: x f y so_apply: x[s] all: x:A. B[x] or: P  Q function: x:A  B[x] universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] uimplies: b supposing a run-lt: run-lt(r) member: t  T so_lambda: x.t[x] prop: or: P  Q infix_ap: x f y runEvents: runEvents(r) assert: b btrue: tt ifthenelse: if b then t else f fi  true: True top: Top subtype: S  T nat: rel_plus: R run-pred: run-pred(r) exists: x:A. B[x] nat_plus: and: P  Q decidable: Dec(P) sq_type: SQType(T) implies: P  Q guard: {T} run-event-loc: run-event-loc(e) le: A  B run-event-step: run-event-step(e) pi1: fst(t) pi2: snd(t) not: A false: False rev_implies: P  Q iff: P  Q
Lemmas :  decidable__le run-event-step_wf nat_wf Id_wf run-event-loc_wf runEvents_wf pRunType_wf rel_plus_wf run-pred_wf subtype_base_sq bool_wf bool_subtype_base assert_wf is-run-event_wf pi1_wf_top pi2_wf assert_elim le_wf rel_exp_one run-info_wf pMsg_wf rel_exp_wf nat_plus_inc

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}r:pRunType(P.M[P]).  \mforall{}e1,e2:runEvents(r).
        (e1  =  e2)  \mvee{}  (e1  run-lt(r)  e2)  \mvee{}  (e2  run-lt(r)  e1) 
        supposing  run-event-loc(e1)  =  run-event-loc(e2)


Date html generated: 2011_08_17-PM-03_38_12
Last ObjectModification: 2011_06_18-AM-11_19_35

Home Index