{ [n:]. [a:Id].  (urand-process(n;a)  dataflow(Unit;n)) }

{ Proof }



Definitions occuring in Statement :  urand-process: urand-process(n;a) dataflow: dataflow(A;B) Id: Id int_seg: {i..j} nat_plus: uall: [x:A]. B[x] unit: Unit member: t  T natural_number: $n
Definitions :  lambda: x.A[x] so_lambda: x y.t[x; y] let: let atom: Atom$n urand: urand(n;a) apply: f a add: n + m pair: <a, b> rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) bool: axiom: Ax urand-process: urand-process(n;a) int_seg: {i..j} unit: Unit dataflow: dataflow(A;B) Id: Id nat_plus: p-outcome: Outcome universe: Type strong-subtype: strong-subtype(A;B) ge: i  j  uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] prop: less_than: a < b void: Void implies: P  Q false: False not: A le: A  B real: subtype: S  T rationals: all: x:A. B[x] function: x:A  B[x] equal: s = t int: set: {x:A| B[x]}  natural_number: $n nat: member: t  T CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  Id_wf nat_plus_wf rec-dataflow_wf int_seg_wf nat_plus_properties member_wf not_wf false_wf nat_properties le_wf urand_wf unit_wf nat_wf

\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a:Id].    (urand-process(n;a)  \mmember{}  dataflow(Unit;\mBbbN{}n))


Date html generated: 2011_08_16-AM-09_53_06
Last ObjectModification: 2011_06_07-PM-06_26_42

Home Index