{ [n:]. [a:Id].  (urand(n;a)    n) }

{ Proof }



Definitions occuring in Statement :  urand: urand(n;a) Id: Id int_seg: {i..j} nat_plus: nat: uall: [x:A]. B[x] member: t  T function: x:A  B[x] natural_number: $n
Definitions :  uniform-fps: Error :uniform-fps,  atom: Atom$n strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B int: set: {x:A| B[x]}  p-outcome: Outcome random: random(p;a;b) all: x:A. B[x] function: x:A  B[x] nat: int_seg: {i..j} natural_number: $n urand: urand(n;a) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] Id: Id nat_plus: member: t  T equal: s = t Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Knd: Knd decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  lambda: x.A[x] qadd_grp: <+> grp_le: infix_ap: x f y pair: <a, b> quotient: x,y:A//B[x; y] grp_leq: a  b bool: qle: r  s select: l[i] qsum: a  j < b. E[j] l_all: (xL.P[x]) cand: A c B map: map(f;as) intensional-universe: IType apply: f a so_apply: x[s] l_member: (x  l) so_lambda: x.t[x] grp_car: |g| finite-prob-space: FinProbSpace proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j sum-map: f[x] for x  L sum: (f[x] | x < k) imax: imax(a;b) multiply: n * m assert: b valueall-type: valueall-type(T) sqequal: s ~ t subtract: n - m add: n + m void: Void prop: length: ||as|| rationals: lelt: i  j < k tag-by: zT rev_implies: P  Q or: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} tuple-type: tuple-type(L) stream: stream(A) isect2: T1  T2 b-union: A  B union: left + right top: Top true: True deq: EqDecider(T) guard: {T} implies: P  Q false: False universe: Type int_nzero: real: subtype: S  T bag: Error :bag,  list: type List upto: upto(n) CollapseTHENA: Error :CollapseTHENA
Lemmas :  length-map length_upto upto_wf nat_plus_inc subtype_rel_self subtype_rel_function nat_plus_properties nat_properties le_wf not_wf false_wf int_seg_properties length_wf_nat subtype_rel_set subtype_rel_sets finite-prob-space_wf top_wf intensional-universe_wf rationals_wf subtype_rel_list Id_wf nat_plus_wf random_wf Error :uniform-fps_wf,  member_wf int_seg_wf p-outcome_wf nat_wf subtype_rel_wf

\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a:Id].    (urand(n;a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}n)


Date html generated: 2011_08_10-AM-07_54_17
Last ObjectModification: 2011_06_07-PM-06_20_57

Home Index