Step
*
1
2
of Lemma
MTree-induction2
1. [T] : Type
2. [P] : MultiTree(T) ─→ ℙ
3. ∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)} ─→ MultiTree(T).
((∀a∈labels.P[children a])
⇒ P[MTree_Node(labels;children)])@i
4. ∀val:T. P[MTree_Leaf(val)]@i
5. ∀n:ℕ. ∀x:MultiTree(T). ((MTree-rank(x) ≤ n)
⇒ P[x])
⊢ {∀x:MultiTree(T). P[x]}
BY
{ (D 0 THEN Auto) }
1
1. [T] : Type
2. [P] : MultiTree(T) ─→ ℙ
3. ∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)} ─→ MultiTree(T).
((∀a∈labels.P[children a])
⇒ P[MTree_Node(labels;children)])@i
4. ∀val:T. P[MTree_Leaf(val)]@i
5. ∀n:ℕ. ∀x:MultiTree(T). ((MTree-rank(x) ≤ n)
⇒ P[x])
6. x : MultiTree(T)@i
⊢ P[x]
Latex:
1. [T] : Type
2. [P] : MultiTree(T) {}\mrightarrow{} \mBbbP{}
3. \mforall{}labels:\{L:Atom List| 0 < ||L||\} . \mforall{}children:\{a:Atom| (a \mmember{} labels)\} {}\mrightarrow{} MultiTree(T).
((\mforall{}a\mmember{}labels.P[children a]) {}\mRightarrow{} P[MTree\_Node(labels;children)])@i
4. \mforall{}val:T. P[MTree\_Leaf(val)]@i
5. \mforall{}n:\mBbbN{}. \mforall{}x:MultiTree(T). ((MTree-rank(x) \mleq{} n) {}\mRightarrow{} P[x])
\mvdash{} \{\mforall{}x:MultiTree(T). P[x]\}
By
(D 0 THEN Auto)
Home
Index