Nuprl Lemma : MTree-induction2

[T:Type]. ∀[P:MultiTree(T) ─→ ℙ].
  ((∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)}  ─→ MultiTree(T).
      ((∀a∈labels.P[children a])  P[MTree_Node(labels;children)]))
   (∀val:T. P[MTree_Leaf(val)])
   {∀x:MultiTree(T). P[x]})


Proof




Definitions occuring in Statement :  MTree_Leaf: MTree_Leaf(val) MTree_Node: MTree_Node(labels;children) MultiTree: MultiTree(T) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] natural_number: $n atom: Atom universe: Type
Lemmas :  less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf all_wf MultiTree_wf MTree-rank_wf nat_wf decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel lelt_wf set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul MultiTree-induction MTree_Node_wf l_member_wf list_wf length_wf l_all_iff zero-le-nat list-subtype map_wf imax-list-ub subtype_rel_list map-length l_exists_iff member_map l_member-settype MTree_Leaf_wf
\mforall{}[T:Type].  \mforall{}[P:MultiTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}labels:\{L:Atom  List|  0  <  ||L||\}  .  \mforall{}children:\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  MultiTree(T).
            ((\mforall{}a\mmember{}labels.P[children  a])  {}\mRightarrow{}  P[MTree\_Node(labels;children)]))
    {}\mRightarrow{}  (\mforall{}val:T.  P[MTree\_Leaf(val)])
    {}\mRightarrow{}  \{\mforall{}x:MultiTree(T).  P[x]\})



Date html generated: 2015_07_17-AM-07_46_35
Last ObjectModification: 2015_01_27-AM-09_47_11

Home Index