Nuprl Lemma : l_member-settype

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L:{x:T| P[x]}  List. ∀x:{x:T| P[x]} .  ((x ∈ L) ⇐⇒ (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q l_member: (x ∈ l) exists: x:A. B[x] member: t ∈ T cand: c∧ B subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a guard: {T} prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top rev_implies:  Q squash: T so_lambda: λ2x.t[x]
Lemmas referenced :  equal_functionality_wrt_subtype_rel2 less_than_wf length_wf equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf l_member_wf subtype_rel_list set_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis lambdaEquality setElimination rename setEquality cumulativity applyEquality functionExtensionality because_Cache sqequalRule introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination productEquality dependent_functionElimination unionElimination natural_numberEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality dependent_set_memberEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:\{x:T|  P[x]\}    List.  \mforall{}x:\{x:T|  P[x]\}  .    ((x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2017_04_17-AM-07_25_00
Last ObjectModification: 2017_02_27-PM-04_03_42

Theory : list_1


Home Index