Nuprl Lemma : MultiTree-induction

[T:Type]. ∀[P:MultiTree(T) ─→ ℙ].
  ((∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)}  ─→ MultiTree(T).
      ((∀u:{a:Atom| (a ∈ labels)} P[children u])  P[MTree_Node(labels;children)]))
   (∀val:T. P[MTree_Leaf(val)])
   {∀v:MultiTree(T). P[v]})


Proof




Definitions occuring in Statement :  MTree_Leaf: MTree_Leaf(val) MTree_Node: MTree_Node(labels;children) MultiTree: MultiTree(T) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] natural_number: $n atom: Atom universe: Type
Lemmas :  uniform-comp-nat-induction all_wf MultiTree_wf isect_wf le_wf MultiTree_size_wf nat_wf less_than_wf MultiTree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base sum-nat length_wf_nat select_wf l_member_wf list-subtype sq_stable__le int_seg_wf length_wf decidable__lt sum_wf false_wf add_functionality_wrt_le add-swap add-commutes le-add-cancel sum-nat-less subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-zero subtract-is-less lelt_wf nat_properties set_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom uall_wf le_weakening MTree_Leaf_wf list_wf MTree_Node_wf and_wf
\mforall{}[T:Type].  \mforall{}[P:MultiTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}labels:\{L:Atom  List|  0  <  ||L||\}  .  \mforall{}children:\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  MultiTree(T).
            ((\mforall{}u:\{a:Atom|  (a  \mmember{}  labels)\}  .  P[children  u])  {}\mRightarrow{}  P[MTree\_Node(labels;children)]))
    {}\mRightarrow{}  (\mforall{}val:T.  P[MTree\_Leaf(val)])
    {}\mRightarrow{}  \{\mforall{}v:MultiTree(T).  P[v]\})



Date html generated: 2015_07_17-AM-07_46_13
Last ObjectModification: 2015_01_27-AM-09_46_05

Home Index