Nuprl Lemma : sum-nat
∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (Σ(f[x] | x < n) ∈ ℕ)
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
guard: {T}, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
lelt_wf, 
decidable__le, 
nat_properties, 
int_seg_properties, 
non_neg_sum, 
sum_wf, 
nat_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
dependent_functionElimination, 
independent_pairFormation, 
unionElimination, 
setEquality, 
intEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (\mSigma{}(f[x]  |  x  <  n)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-AM-07_31_57
Last ObjectModification:
2016_01_14-PM-09_56_36
Theory : int_2
Home
Index