Nuprl Lemma : non_neg_sum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  0 ≤ Σ(f[x] x < n) supposing ∀x:ℕn. (0 ≤ f[x])


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: all: x:A. B[x] implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b guard: {T}
Lemmas referenced :  sum_wf add_nat_wf nat_wf zero-le-nat lelt_wf decidable__lt subtype_rel_self int_seg_subtype subtype_rel_dep_function int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le false_wf primrec0_lemma le_wf all_wf primrec_wf less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_wf sum-as-primrec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename hypothesis lambdaFormation intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality addEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality unionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    0  \mleq{}  \mSigma{}(f[x]  |  x  <  n)  supposing  \mforall{}x:\mBbbN{}n.  (0  \mleq{}  f[x])



Date html generated: 2016_05_14-AM-07_31_51
Last ObjectModification: 2016_01_14-PM-09_56_55

Theory : int_2


Home Index