Nuprl Lemma : non_neg_sum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  0 ≤ Σ(f[x] | x < n) supposing ∀x:ℕn. (0 ≤ f[x])
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
guard: {T}
Lemmas referenced : 
sum_wf, 
add_nat_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
decidable__lt, 
subtype_rel_self, 
int_seg_subtype, 
subtype_rel_dep_function, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
primrec0_lemma, 
le_wf, 
all_wf, 
primrec_wf, 
less_than'_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
int_seg_wf, 
sum-as-primrec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
lambdaFormation, 
intWeakElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
addEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_set_memberEquality, 
unionElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    0  \mleq{}  \mSigma{}(f[x]  |  x  <  n)  supposing  \mforall{}x:\mBbbN{}n.  (0  \mleq{}  f[x])
Date html generated:
2016_05_14-AM-07_31_51
Last ObjectModification:
2016_01_14-PM-09_56_55
Theory : int_2
Home
Index