Nuprl Lemma : non_neg_sum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. 0 ≤ Σ(f[x] | x < n) supposing ∀x:ℕn. (0 ≤ f[x])
Proof
Definitions occuring in Statement :
sum: Σ(f[x] | x < k)
,
int_seg: {i..j-}
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
less_than: a < b
,
guard: {T}
Lemmas referenced :
sum_wf,
add_nat_wf,
nat_wf,
zero-le-nat,
lelt_wf,
decidable__lt,
subtype_rel_self,
int_seg_subtype,
subtype_rel_dep_function,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
false_wf,
primrec0_lemma,
le_wf,
all_wf,
primrec_wf,
less_than'_wf,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties,
int_seg_wf,
sum-as-primrec
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
natural_numberEquality,
setElimination,
rename,
hypothesis,
lambdaFormation,
intWeakElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
productElimination,
independent_pairEquality,
addEquality,
because_Cache,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
dependent_set_memberEquality,
unionElimination
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}]. 0 \mleq{} \mSigma{}(f[x] | x < n) supposing \mforall{}x:\mBbbN{}n. (0 \mleq{} f[x])
Date html generated:
2016_05_14-AM-07_31_51
Last ObjectModification:
2016_01_14-PM-09_56_55
Theory : int_2
Home
Index