Step
*
of Lemma
bm_cnt_prop0_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_cnt_prop0(m) ∈ ℤ × 𝔹)
BY
{ (Intros
   THEN Unhide
   THEN (InstLemma `binary_map_ind_wf_simple` [⌈T⌉;⌈Key⌉]⋅ THENA Auto)
   THEN Unfold `bm_cnt_prop0` 0
   THEN BHyp -1 
   THEN Auto) }
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_cnt\_prop0(m)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbB{})
By
(Intros
  THEN  Unhide
  THEN  (InstLemma  `binary\_map\_ind\_wf\_simple`  [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}Key\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  Unfold  `bm\_cnt\_prop0`  0
  THEN  BHyp  -1 
  THEN  Auto)
Home
Index