Nuprl Lemma : bm_cnt_prop0_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)]. (bm_cnt_prop0(m) ∈ ℤ × 𝔹)
Proof
Definitions occuring in Statement :
bm_cnt_prop0: bm_cnt_prop0(m)
,
binary_map: binary_map(T;Key)
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
int: ℤ
,
universe: Type
Lemmas :
binary_map_ind_wf_simple,
bool_wf,
btrue_wf,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
binary_map_wf
\mforall{}[T,Key:Type]. \mforall{}[m:binary\_map(T;Key)]. (bm\_cnt\_prop0(m) \mmember{} \mBbbZ{} \mtimes{} \mBbbB{})
Date html generated:
2015_07_17-AM-08_18_01
Last ObjectModification:
2015_01_27-PM-00_39_52
Home
Index