Nuprl Lemma : bm_cnt_prop0_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_cnt_prop0(m) ∈ ℤ × 𝔹)
Proof
Definitions occuring in Statement : 
bm_cnt_prop0: bm_cnt_prop0(m)
, 
binary_map: binary_map(T;Key)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
binary_map_ind_wf_simple, 
bool_wf, 
btrue_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_cnt\_prop0(m)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_18_01
Last ObjectModification:
2015_01_27-PM-00_39_52
Home
Index