Step * of Lemma hdf-comb2_wf

[A,B,C,D:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[f:B ─→ C ─→ bag(D)].
  hdf-comb2(f;X;Y) ∈ hdataflow(A;D) supposing (↓C) ∧ valueall-type(D)
BY
ProveWfLemma }


Latex:


\mforall{}[A,B,C,D:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  bag(D)].
    hdf-comb2(f;X;Y)  \mmember{}  hdataflow(A;D)  supposing  (\mdownarrow{}C)  \mwedge{}  valueall-type(D)


By

ProveWfLemma




Home Index