Nuprl Lemma : hdf-comb2_wf
∀[A,B,C,D:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[f:B ─→ C ─→ bag(D)].
hdf-comb2(f;X;Y) ∈ hdataflow(A;D) supposing (↓C) ∧ valueall-type(D)
Proof
Definitions occuring in Statement :
hdf-comb2: hdf-comb2(f;X;Y)
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
,
and: P ∧ Q
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
,
bag: bag(T)
Lemmas :
hdf-compose2_wf,
hdf-compose1_wf,
bag_wf,
function-valueall-type,
bag-value-type,
squash_wf,
valueall-type_wf,
hdataflow_wf
\mforall{}[A,B,C,D:Type]. \mforall{}[X:hdataflow(A;B)]. \mforall{}[Y:hdataflow(A;C)]. \mforall{}[f:B {}\mrightarrow{} C {}\mrightarrow{} bag(D)].
hdf-comb2(f;X;Y) \mmember{} hdataflow(A;D) supposing (\mdownarrow{}C) \mwedge{} valueall-type(D)
Date html generated:
2015_07_17-AM-08_06_01
Last ObjectModification:
2015_01_27-PM-00_15_24
Home
Index