Nuprl Lemma : hdf-comb2_wf
∀[A,B,C,D:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[f:B ─→ C ─→ bag(D)].
  hdf-comb2(f;X;Y) ∈ hdataflow(A;D) supposing (↓C) ∧ valueall-type(D)
Proof
Definitions occuring in Statement : 
hdf-comb2: hdf-comb2(f;X;Y)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
hdf-compose2_wf, 
hdf-compose1_wf, 
bag_wf, 
function-valueall-type, 
bag-value-type, 
squash_wf, 
valueall-type_wf, 
hdataflow_wf
\mforall{}[A,B,C,D:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  bag(D)].
    hdf-comb2(f;X;Y)  \mmember{}  hdataflow(A;D)  supposing  (\mdownarrow{}C)  \mwedge{}  valueall-type(D)
Date html generated:
2015_07_17-AM-08_06_01
Last ObjectModification:
2015_01_27-PM-00_15_24
Home
Index