Nuprl Lemma : bag-value-type

[T:Type]. value-type(bag(T))


Proof




Definitions occuring in Statement :  bag: bag(T) value-type: value-type(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a value-type: value-type(T) has-value: (a)↓ prop:
Lemmas referenced :  quotient-value-type list_wf permutation_wf permutation-equiv list-value-type equal-wf-base bag_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality independent_isectElimination isect_memberEquality axiomSqleEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  value-type(bag(T))



Date html generated: 2016_05_15-PM-02_21_28
Last ObjectModification: 2015_12_27-AM-09_55_27

Theory : bags


Home Index