Nuprl Lemma : quotient-value-type
∀[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (value-type(a,b:A//E[a;b])) supposing (value-type(A) and EquivRel(A;a,b.E[a;b]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
value-type: value-type(T)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
has-value: (a)↓
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__has-value, 
quotient_wf, 
bool_wf, 
value-type-has-value, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base, 
equal_wf, 
equal-wf-base, 
base_wf, 
value-type_wf, 
equiv_rel_wf, 
isect2_wf, 
isect2_subtype_rel, 
subtype_rel_functionality_wrt_iff, 
quotient-isect-base, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaFormation, 
pointwiseFunctionality, 
callbyvalueReduce, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
because_Cache, 
divergentSqle, 
sqleReflexivity, 
baseClosed, 
dependent_functionElimination, 
imageMemberEquality, 
imageElimination, 
axiomSqleEquality, 
functionEquality, 
universeEquality, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (value-type(a,b:A//E[a;b]))  supposing  (value-type(A)  and  EquivRel(A;a,b.E[a;b]))
Date html generated:
2017_04_14-AM-07_39_36
Last ObjectModification:
2017_02_27-PM-03_11_17
Theory : quot_1
Home
Index