Nuprl Lemma : hdf-compose1_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[f:B ─→ C].  f o X ∈ hdataflow(A;C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose1: f o X
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
mk-hdf_wf, 
hdf-halted_wf, 
hdf-ap_wf, 
bag_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-map_wf, 
evalall-reduce, 
valueall-type_wf, 
hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[f:B  {}\mrightarrow{}  C].    f  o  X  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)
Date html generated:
2015_07_17-AM-08_05_25
Last ObjectModification:
2015_01_27-PM-00_15_51
Home
Index