Step
*
of Lemma
hdf-comb3_wf
∀[A,C,B1,B2,B3:Type]. ∀[f:B1 ─→ B2 ─→ B3 ─→ bag(C)]. ∀[X:hdataflow(A;B1)]. ∀[Y:hdataflow(A;B2)]. ∀[Z:hdataflow(A;B3)].
hdf-comb3(f;X;Y;Z) ∈ hdataflow(A;C) supposing ((↓B2) ∧ (↓B3)) ∧ valueall-type(C)
BY
{ (ProveWfLemma THEN SqExRepD THEN D 0) }
Latex:
\mforall{}[A,C,B1,B2,B3:Type]. \mforall{}[f:B1 {}\mrightarrow{} B2 {}\mrightarrow{} B3 {}\mrightarrow{} bag(C)]. \mforall{}[X:hdataflow(A;B1)]. \mforall{}[Y:hdataflow(A;B2)].
\mforall{}[Z:hdataflow(A;B3)].
hdf-comb3(f;X;Y;Z) \mmember{} hdataflow(A;C) supposing ((\mdownarrow{}B2) \mwedge{} (\mdownarrow{}B3)) \mwedge{} valueall-type(C)
By
(ProveWfLemma THEN SqExRepD THEN D 0)
Home
Index