Nuprl Lemma : hdf-comb3_wf

[A,C,B1,B2,B3:Type]. ∀[f:B1 ─→ B2 ─→ B3 ─→ bag(C)]. ∀[X:hdataflow(A;B1)]. ∀[Y:hdataflow(A;B2)]. ∀[Z:hdataflow(A;B3)].
  hdf-comb3(f;X;Y;Z) ∈ hdataflow(A;C) supposing ((↓B2) ∧ (↓B3)) ∧ valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-comb3: hdf-comb3(f;X;Y;Z) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] squash: T and: P ∧ Q member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  hdf-compose2_wf hdf-compose3_wf bag_wf hdf-compose1_wf function-valueall-type function-value-type bag-value-type squash_wf valueall-type_wf hdataflow_wf
\mforall{}[A,C,B1,B2,B3:Type].  \mforall{}[f:B1  {}\mrightarrow{}  B2  {}\mrightarrow{}  B3  {}\mrightarrow{}  bag(C)].  \mforall{}[X:hdataflow(A;B1)].  \mforall{}[Y:hdataflow(A;B2)].
\mforall{}[Z:hdataflow(A;B3)].
    hdf-comb3(f;X;Y;Z)  \mmember{}  hdataflow(A;C)  supposing  ((\mdownarrow{}B2)  \mwedge{}  (\mdownarrow{}B3))  \mwedge{}  valueall-type(C)



Date html generated: 2015_07_17-AM-08_06_03
Last ObjectModification: 2015_01_27-PM-00_15_30

Home Index