Nuprl Lemma : hdf-comb3_wf
∀[A,C,B1,B2,B3:Type]. ∀[f:B1 ─→ B2 ─→ B3 ─→ bag(C)]. ∀[X:hdataflow(A;B1)]. ∀[Y:hdataflow(A;B2)]. ∀[Z:hdataflow(A;B3)].
  hdf-comb3(f;X;Y;Z) ∈ hdataflow(A;C) supposing ((↓B2) ∧ (↓B3)) ∧ valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-comb3: hdf-comb3(f;X;Y;Z)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
hdf-compose2_wf, 
hdf-compose3_wf, 
bag_wf, 
hdf-compose1_wf, 
function-valueall-type, 
function-value-type, 
bag-value-type, 
squash_wf, 
valueall-type_wf, 
hdataflow_wf
\mforall{}[A,C,B1,B2,B3:Type].  \mforall{}[f:B1  {}\mrightarrow{}  B2  {}\mrightarrow{}  B3  {}\mrightarrow{}  bag(C)].  \mforall{}[X:hdataflow(A;B1)].  \mforall{}[Y:hdataflow(A;B2)].
\mforall{}[Z:hdataflow(A;B3)].
    hdf-comb3(f;X;Y;Z)  \mmember{}  hdataflow(A;C)  supposing  ((\mdownarrow{}B2)  \mwedge{}  (\mdownarrow{}B3))  \mwedge{}  valueall-type(C)
Date html generated:
2015_07_17-AM-08_06_03
Last ObjectModification:
2015_01_27-PM-00_15_30
Home
Index