Nuprl Lemma : hdf-compose3_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B ─→ C)]. ∀[Y:hdataflow(A;B)].  Y ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose3: Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  mk-hdf_wf bor_wf hdf-halted_wf hdf-ap_wf bag_wf valueall-type-has-valueall bag-valueall-type bag-combine_wf bag-map_wf evalall-reduce valueall-type_wf hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  C)].  \mforall{}[Y:hdataflow(A;B)].
    X  o  Y  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_05_30
Last ObjectModification: 2015_01_27-PM-00_15_42

Home Index