Step
*
of Lemma
hdf-state-base4-3
∀[F1,F2,F3,F4,f1,f2,f3,f4,s:Top]. ∀[hdr1,hdr2,hdr3,hdr4:Name].
(hdf-state((λx,s. f1[x;s]) o hdf-base(a.if name_eq(fst(a);hdr1) then [F1[a]] else [] fi )
|| (λx,s. f2[x;s]) o hdf-base(a.if name_eq(fst(a);hdr2) then [F2[a]] else [] fi )
|| (λx,s. f3[x;s]) o hdf-base(a.if name_eq(fst(a);hdr3) then [F3[a]] else [] fi ) || (λx,s. f4[x;s])
o hdf-base(a.if name_eq(fst(a);hdr4) then [F4[a]] else [] fi );[s])
~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if name_eq(fst(a);hdr1) then f1[F1[a];s]
if name_eq(fst(a);hdr2) then f2[F2[a];s]
if name_eq(fst(a);hdr3) then f3[F3[a];s]
if name_eq(fst(a);hdr4) then f4[F4[a];s]
else s
fi ; λg.<mk-hdf (g (λx.x)), g (λx.[x])>; 1)))))
s) supposing
((¬(hdr1 = hdr2 ∈ Name)) and
(¬(hdr1 = hdr3 ∈ Name)) and
(¬(hdr1 = hdr4 ∈ Name)) and
(¬(hdr2 = hdr3 ∈ Name)) and
(¬(hdr2 = hdr4 ∈ Name)) and
(¬(hdr3 = hdr4 ∈ Name)))
BY
{ ((UnivCD THENA Auto)
THEN (RWO "hdf-base-transformation1" 0 THENA Auto)
THEN (RWO "hdf-compose1-transformation2" 0 THENA Auto)
THEN Repeat ((RWO "hdf-parallel-transformation2-1" 0 THENA Auto))
THEN Reduce 0
THEN (RWO "hdf-state-transformation2" 0 THENA Auto)
THEN RepUR ``cbva_seq mk_lambdas_fun select_fun_ap select_fun_last mk_lambdas bag-map`` 0
THEN Repeat ((RecUnfold `callbyvalueall_seq` 0 THEN Reduce 0))
THEN Repeat ((RecUnfold `mk_lambdas-fun` 0 THEN Reduce 0))
THEN Repeat (((RWO "primrec-unroll" 0 THENA Auto) THEN Reduce 0))
THEN (RWO "map-ifthenelse" 0 THENA Auto)
THEN HdfStateTransDefault `s') }
Latex:
\mforall{}[F1,F2,F3,F4,f1,f2,f3,f4,s:Top]. \mforall{}[hdr1,hdr2,hdr3,hdr4:Name].
(hdf-state((\mlambda{}x,s. f1[x;s]) o hdf-base(a.if name\_eq(fst(a);hdr1) then [F1[a]] else [] fi )
|| (\mlambda{}x,s. f2[x;s]) o hdf-base(a.if name\_eq(fst(a);hdr2) then [F2[a]] else [] fi )
|| (\mlambda{}x,s. f3[x;s]) o hdf-base(a.if name\_eq(fst(a);hdr3) then [F3[a]] else [] fi )
|| (\mlambda{}x,s. f4[x;s]) o hdf-base(a.if name\_eq(fst(a);hdr4)
then [F4[a]]
else []
fi );[s]) \msim{} fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(\mlambda{}n.if name\_eq(fst(a);hdr1)
then f1[F1[a];s]
if name\_eq(fst(a);hdr2)
then f2[F2[a];s]
if name\_eq(fst(a);hdr3)
then f3[F3[a];s]
if name\_eq(fst(a);hdr4)
then f4[F4[a];s]
else s
fi ; \mlambda{}g.<mk-hdf (g (\mlambda{}x.x))
, g (\mlambda{}x.[x])
> 1)))))
s) supposing
((\mneg{}(hdr1 = hdr2)) and
(\mneg{}(hdr1 = hdr3)) and
(\mneg{}(hdr1 = hdr4)) and
(\mneg{}(hdr2 = hdr3)) and
(\mneg{}(hdr2 = hdr4)) and
(\mneg{}(hdr3 = hdr4)))
By
((UnivCD THENA Auto)
THEN (RWO "hdf-base-transformation1" 0 THENA Auto)
THEN (RWO "hdf-compose1-transformation2" 0 THENA Auto)
THEN Repeat ((RWO "hdf-parallel-transformation2-1" 0 THENA Auto))
THEN Reduce 0
THEN (RWO "hdf-state-transformation2" 0 THENA Auto)
THEN RepUR ``cbva\_seq mk\_lambdas\_fun select\_fun\_ap select\_fun\_last mk\_lambdas bag-map`` 0
THEN Repeat ((RecUnfold `callbyvalueall\_seq` 0 THEN Reduce 0))
THEN Repeat ((RecUnfold `mk\_lambdas-fun` 0 THEN Reduce 0))
THEN Repeat (((RWO "primrec-unroll" 0 THENA Auto) THEN Reduce 0))
THEN (RWO "map-ifthenelse" 0 THENA Auto)
THEN HdfStateTransDefault `s')
Home
Index