Nuprl Lemma : bs_l_tree_member_wf

[L,T:Type]. ∀[t:l_tree(L;T)]. ∀[x:T]. ∀[f:T ─→ ℤ].  (bs_l_tree_member(x;t;f) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bs_l_tree_member: bs_l_tree_member(x;t;f) l_tree: l_tree(L;T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] int: universe: Type
Lemmas :  l_tree_ind_wf_simple top_wf bool_wf l_tree_covariant btrue_wf bor_wf eq_int_wf lt_int_wf l_tree_wf
\mforall{}[L,T:Type].  \mforall{}[t:l\_tree(L;T)].  \mforall{}[x:T].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (bs\_l\_tree\_member(x;t;f)  \mmember{}  \mBbbB{})



Date html generated: 2015_07_17-AM-07_41_55
Last ObjectModification: 2015_01_27-AM-09_30_57

Home Index