Nuprl Lemma : l_tree_covariant

[A,B,T:Type].  l_tree(A;T) ⊆l_tree(B;T) supposing A ⊆B


Proof




Definitions occuring in Statement :  l_tree: l_tree(L;T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Lemmas :  subtype_rel_wf l_tree_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf l_tree_size_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties l_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base l_tree_leaf_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom not-le-2 subtract-is-less lelt_wf l_tree_node_wf decidable__lt not-equal-2 le-add-cancel-alt sq_stable__le add-mul-special zero-mul nat_wf
\mforall{}[A,B,T:Type].    l\_tree(A;T)  \msubseteq{}r  l\_tree(B;T)  supposing  A  \msubseteq{}r  B



Date html generated: 2015_07_17-AM-07_41_43
Last ObjectModification: 2015_01_27-AM-09_31_21

Home Index