Nuprl Lemma : l_tree_node_wf
∀[L,T:Type]. ∀[val:T]. ∀[left_subtree,right_subtree:l_tree(L;T)].
  (l_tree_node(val;left_subtree;right_subtree) ∈ l_tree(L;T))
Proof
Definitions occuring in Statement : 
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
, 
l_tree: l_tree(L;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
l_treeco-ext, 
l_treeco_wf, 
eq_atom_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
eqtt_to_assert, 
assert_of_eq_atom, 
add_nat_wf, 
false_wf, 
le_wf, 
l_tree_size_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
l_treeco_size_wf, 
l_tree_wf
\mforall{}[L,T:Type].  \mforall{}[val:T].  \mforall{}[left$_{subtree}$,right$_{subtree}$:\000Cl\_tree(L;T)].
    (l\_tree\_node(val;left$_{subtree}$;right$_{subtree}$)  \mmember{}  l\_t\000Cree(L;T))
Date html generated:
2015_07_17-AM-07_41_28
Last ObjectModification:
2015_01_27-AM-09_31_10
Home
Index