Nuprl Lemma : l_tree_node_wf

[L,T:Type]. ∀[val:T]. ∀[left_subtree,right_subtree:l_tree(L;T)].
  (l_tree_node(val;left_subtree;right_subtree) ∈ l_tree(L;T))


Proof




Definitions occuring in Statement :  l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree: l_tree(L;T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  l_treeco-ext l_treeco_wf eq_atom_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom eqtt_to_assert assert_of_eq_atom add_nat_wf false_wf le_wf l_tree_size_wf nat_wf value-type-has-value set-value-type int-value-type has-value_wf-partial l_treeco_size_wf l_tree_wf
\mforall{}[L,T:Type].  \mforall{}[val:T].  \mforall{}[left$_{subtree}$,right$_{subtree}$:\000Cl\_tree(L;T)].
    (l\_tree\_node(val;left$_{subtree}$;right$_{subtree}$)  \mmember{}  l\_t\000Cree(L;T))



Date html generated: 2015_07_17-AM-07_41_28
Last ObjectModification: 2015_01_27-AM-09_31_10

Home Index