Nuprl Lemma : l_treeco-ext

[L,T:Type].
  l_treeco(L;T) ≡ lbl:Atom × if lbl =a "leaf" then L
                             if lbl =a "node" then val:T × left_subtree:l_treeco(L;T) × l_treeco(L;T)
                             else Void
                             fi 


Proof




Definitions occuring in Statement :  l_treeco: l_treeco(L;T) ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B uall: [x:A]. B[x] product: x:A × B[x] token: "$token" atom: Atom void: Void universe: Type
Lemmas :  corec-ext eq_atom_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom eqtt_to_assert assert_of_eq_atom subtype_rel_product subtype_rel_wf strong-continuous-depproduct continuous-constant strong-continuous-product continuous-id subtype_rel_weakening nat_wf
\mforall{}[L,T:Type].
    l\_treeco(L;T)  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "leaf"  then  L
                                                          if  lbl  =a  "node"  then  val:T  \mtimes{}  left$_{subtree}$:l\_tr\000Ceeco(L;T)  \mtimes{}  l\_treeco(L;T)
                                                          else  Void
                                                          fi 



Date html generated: 2015_07_17-AM-07_41_17
Last ObjectModification: 2015_01_27-AM-09_31_16

Home Index