Nuprl Lemma : l_tree-ext

[L,T:Type].
  l_tree(L;T) ≡ lbl:Atom × if lbl =a "leaf" then L
                           if lbl =a "node" then val:T × left_subtree:l_tree(L;T) × l_tree(L;T)
                           else Void
                           fi 


Proof




Definitions occuring in Statement :  l_tree: l_tree(L;T) ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B uall: [x:A]. B[x] product: x:A × B[x] token: "$token" atom: Atom void: Void universe: Type
Lemmas :  l_treeco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom value-type-has-value int-value-type has-value_wf-partial nat_wf set-value-type le_wf l_treeco_size_wf l_tree_wf l_treeco_wf add-nat false_wf l_tree_size_wf nat_properties
\mforall{}[L,T:Type].
    l\_tree(L;T)  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "leaf"  then  L
                                                      if  lbl  =a  "node"  then  val:T  \mtimes{}  left$_{subtree}$:l\_tree\000C(L;T)  \mtimes{}  l\_tree(L;T)
                                                      else  Void
                                                      fi 



Date html generated: 2015_07_17-AM-07_41_24
Last ObjectModification: 2015_01_29-PM-04_39_09

Home Index