Nuprl Lemma : bs_l_tree_wf
∀[L,T:Type]. ∀[t:l_tree(L;T)]. ∀[f:T ─→ ℤ].  (bs_l_tree(t;f) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bs_l_tree: bs_l_tree(t;f)
, 
l_tree: l_tree(L;T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
l_tree_ind_wf_simple, 
top_wf, 
bool_wf, 
l_tree_covariant, 
btrue_wf, 
eqtt_to_assert, 
max_l_tree_wf, 
unit_wf2, 
lt_int_wf, 
min_l_tree_wf, 
l_tree_wf
\mforall{}[L,T:Type].  \mforall{}[t:l\_tree(L;T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (bs\_l\_tree(t;f)  \mmember{}  \mBbbB{})
Date html generated:
2015_07_17-AM-07_41_52
Last ObjectModification:
2015_01_27-AM-09_31_00
Home
Index