Step
*
1
11
1
of Lemma
mFOL-proveable-evidence
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : ℕ@i
5. var : ℤ@i
6. hypnum < ||hyps||
7. ↑mFOquant?(hyps[hypnum])
8. mFOquant-isall(hyps[hypnum]) = tt
9. mFOL-sequent-evidence(<[mFOquant-body(hyps[hypnum])[var/mFOquant-var(hyps[hypnum])] / hyps], concl>)
⊢ mFOL-sequent-evidence(<hyps, concl>)
BY
{ (FLemma `mFOL-sequent-evidence_transitivity2` [-1]
THEN Auto
THEN Thin (-1)
THEN Using [`x', ⌈hyps[hypnum]⌉ ] (BLemma `mFOL-sequent-evidence_transitivity1`)⋅
THEN Auto
THEN Try ((BLemma `mFOL-sequent-evidence-trivial` THEN Auto))
THEN (Assert hyps[hypnum] = ∀mFOquant-var(hyps[hypnum]);mFOquant-body(hyps[hypnum])) ∈ mFOL() BY
(RepeatFor 2 (MoveToConcl (-5))
THEN GenConclAtAddr [1;1;1]
THEN All Thin
THEN MoveToConcl (-1)
THEN BLemmaUp `mFOL-induction`
THEN Reduce 0
THEN Auto
THEN Try ((Fold `AbstractFOFormula` 0 THEN Auto))
THEN Unfold `mFOL-sequent` 0
THEN Auto))⋅
THEN HypSubst (-1) (-2)
THEN Auto
THEN Thin (-1))⋅ }
1
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : ℕ@i
5. var : ℤ@i
6. hypnum < ||hyps||
7. ↑mFOquant?(hyps[hypnum])
8. mFOquant-isall(hyps[hypnum]) = tt
9. [Dom] : Type
10. [S] : FOStruct(Dom)
11. a : FOAssignment(Dom)@i
12. Dom,S,a |= mFOL-abstract(∀mFOquant-var(hyps[hypnum]);mFOquant-body(hyps[hypnum])))
⊢ Dom,S,a |= mFOL-abstract(mFOquant-body(hyps[hypnum])[var/mFOquant-var(hyps[hypnum])])
Latex:
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : \mBbbN{}@i
5. var : \mBbbZ{}@i
6. hypnum < ||hyps||
7. \muparrow{}mFOquant?(hyps[hypnum])
8. mFOquant-isall(hyps[hypnum]) = tt
9. mFOL-sequent-evidence(<[mFOquant-body(hyps[hypnum])[var/mFOquant-var(hyps[hypnum])] / hyps]
, concl
>)
\mvdash{} mFOL-sequent-evidence(<hyps, concl>)
By
(FLemma `mFOL-sequent-evidence\_transitivity2` [-1]
THEN Auto
THEN Thin (-1)
THEN Using [`x', \mkleeneopen{}hyps[hypnum]\mkleeneclose{} ] (BLemma `mFOL-sequent-evidence\_transitivity1`)\mcdot{}
THEN Auto
THEN Try ((BLemma `mFOL-sequent-evidence-trivial` THEN Auto))
THEN (Assert hyps[hypnum] = \mforall{}mFOquant-var(hyps[hypnum]);mFOquant-body(hyps[hypnum])) BY
(RepeatFor 2 (MoveToConcl (-5))
THEN GenConclAtAddr [1;1;1]
THEN All Thin
THEN MoveToConcl (-1)
THEN BLemmaUp `mFOL-induction`
THEN Reduce 0
THEN Auto
THEN Try ((Fold `AbstractFOFormula` 0 THEN Auto))
THEN Unfold `mFOL-sequent` 0
THEN Auto))\mcdot{}
THEN HypSubst (-1) (-2)
THEN Auto
THEN Thin (-1))\mcdot{}
Home
Index