Nuprl Lemma : mFOL-proveable-evidence

Soundness theorem for mFOL() with respect to uniform evidence semantics.

It says that from correct proof of mFOL sequent we may construct
uniform evidence mFOL-sequent-evidence for the sequent.
Uniform evidence for an abstract formula, fmla, is the 
intersection over all domains, Dom, and all structures, S, over Dom,
of evidence for ∀a:FOAssignment(Dom). Dom,S,a |= fmla.

NOTE:
Since there are no assignments into an empty domain, this means that any
evidence works when Dom is empty, so the intersection is essentially over
non-empty domains Dom. 

Thus, (forall x. P(x)) => (exists x. P(x)) is uniformly valid
(i.e. has uniform evidence) so (by our completeness theorem) is provable.
careful examination of the effect of the mFOL rules 
 (see mFOLeffect)
will show that it is indeed provable.⋅

[s:mFOL-sequent()]. (mFOL-proveable(s)  mFOL-sequent-evidence(s))


Proof




Definitions occuring in Statement :  mFOL-proveable: mFOL-proveable(s) mFOL-sequent-evidence: mFOL-sequent-evidence(s) mFOL-sequent: mFOL-sequent() uall: [x:A]. B[x] implies:  Q
Lemmas :  mFOL-proveable_wf mFOL-sequent_wf W-induction mFOLRule_wf mFOLeffect_wf list_wf unit_wf2 int_seg_wf length_wf all_wf correct_proof_wf subtype_rel_self proof-tree_wf mFOL-sequent-evidence_wf W_wf mFOLRule-induction mFOL_wf mFOconnect?_wf bool_wf eqtt_to_assert eq_atom_wf mFOconnect-knd_wf assert_of_eq_atom length_of_cons_lemma length_of_nil_lemma less_than_wf false_wf lelt_wf select_wf equal_wf list-cases cons_neq_nil mFOconnect-left_wf cons_wf mFOconnect-right_wf product_subtype_list length_wf_nat nat_wf decidable__lt condition-implies-le minus-add minus-one-mul zero-add add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel length_nil non_neg_length nil_wf length_wf_nil length_cons eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom bfalse_wf and_wf isl_wf btrue_wf btrue_neq_bfalse equal-wf-base-T mRuleandI_wf mRuleimpI_wf bl-all_wf l_member_wf bnot_wf deq-member_wf int-deq_wf mFOL-freevars_wf iff_transitivity assert_wf l_all_wf2 not_wf iff_weakening_uiff assert-bl-all l_all_functionality assert_of_bnot assert-deq-member eq_bool_wf mFOquant-isall_wf assert_of_eq_bool mFOL-subst_wf mFOquant-body_wf mFOquant-var_wf equal-wf-T-base mRuleallI_wf mFOquant?_wf mRuleexistsI_wf mRuleorI_wf deq-mFO_wf mRulehyp_wf lt_int_wf assert_of_lt_int null_nil_lemma null_wf3 subtype_rel_list top_wf null_cons_lemma sq_stable__le mRuleandE_wf mRuleorE_wf mRuleimpE_wf mRuleallE_wf mRuleexistsE_wf mFOL-induction mFOconnect_wf squash_wf true_wf iff_weakening_equal equal-wf-base atom_subtype_base mFOL-sequent-evidence_and map_cons_lemma tupletype_cons_lemma FOAssignment_wf FOStruct_wf map_nil_lemma tupletype_nil_lemma FOSatWith_wf mFOL-abstract_wf map_wf assert_of_null tuple-type_wf mFOquant_wf mFOatomic_wf mFOL-subst-abstract update-assignment_wf eq_int_wf assert_of_eq_int neg_assert_of_eq_int mFOL-abstract-functionality member_filter int_subtype_base list_induction l_all_cons mFOL-sequent-evidence_transitivity1 mFOL-sequent-evidence-trivial mFOL-sequent-evidence_transitivity2 select-cons le_int_wf le_wf add-swap decidable__le subtract_wf not-le-2 minus-minus minus-zero le-add-cancel2 less_than_transitivity2 le_weakening bool_cases assert_of_le_int select-tuple_wf map_length select-map stuck-spread base_wf null-map less_than_transitivity1 less_than_irreflexivity sq_stable__correct_proof proof-tree-ext
\mforall{}[s:mFOL-sequent()].  (mFOL-proveable(s)  {}\mRightarrow{}  mFOL-sequent-evidence(s))



Date html generated: 2015_07_17-AM-07_57_12
Last ObjectModification: 2015_02_03-PM-09_43_19

Home Index