Nuprl Lemma : null-map

[f,L:Top].  (null(map(f;L)) null(L))


Proof




Definitions occuring in Statement :  null: null(as) map: map(f;as) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T null: null(as) map: map(f;as) list_ind: list_ind has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q cons: [a b] bfalse: ff top: Top nil: [] it: btrue: tt
Lemmas referenced :  bottom-sqle strictness-ispair has-value-implies-dec-isaxiom-2 top_wf is-exception_wf has-value_wf_base has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalSqle sqleRule thin divergentSqle callbyvalueIspair sqequalHypSubstitution hypothesis callbyvalueCallbyvalue callbyvalueReduce lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqleReflexivity isectElimination baseClosed lambdaFormation isect_memberEquality voidElimination voidEquality because_Cache baseApply closedConclusion ispairExceptionCases axiomSqleEquality callbyvalueExceptionCases exceptionSqequal sqequalAxiom

Latex:
\mforall{}[f,L:Top].    (null(map(f;L))  \msim{}  null(L))



Date html generated: 2016_05_14-AM-06_30_48
Last ObjectModification: 2016_01_14-PM-08_26_06

Theory : list_0


Home Index