Nuprl Lemma : strictness-ispair
∀[a,b:Top].  (if ⊥ is a pair then a otherwise b ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
ispair: if z is a pair then a otherwise b
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
top: Top
Lemmas referenced : 
top_wf, 
bottom-sqle, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueIspair, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
independent_functionElimination, 
voidElimination, 
ispairExceptionCases, 
axiomSqleEquality, 
baseClosed, 
isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
sqleReflexivity, 
isect_memberEquality, 
voidEquality, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[a,b:Top].    (if  \mbot{}  is  a  pair  then  a  otherwise  b  \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_43_45
Last ObjectModification:
2016_01_14-PM-07_07_34
Theory : computation
Home
Index