Nuprl Lemma : mRuleimpE_wf

[hypnum:ℕ]. (impE on hypnum ∈ mFOLRule())


Proof




Definitions occuring in Statement :  mRuleimpE: impE on hypnum mFOLRule: mFOLRule() nat: uall: [x:A]. B[x] member: t ∈ T
Lemmas :  eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom unit_wf2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_wf
\mforall{}[hypnum:\mBbbN{}].  (impE  on  hypnum  \mmember{}  mFOLRule())



Date html generated: 2015_07_17-AM-07_55_15
Last ObjectModification: 2015_01_27-AM-10_06_25

Home Index