Nuprl Lemma : correct_proof_wf
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent].
∀[pf:proof-tree(Sequent;Rule;effect)].
  (correct_proof(Sequent;effect;s;pf) ∈ ℙ)
Proof
Definitions occuring in Statement : 
correct_proof: correct_proof(Sequent;effect;s;pf)
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
all: ∀x:A. B[x]
, 
correct_proof: correct_proof(Sequent;effect;s;pf)
, 
Wsup: Wsup(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
pcw-pp-barred: Barred(pp)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
cw-step: cw-step(A;a.B[a])
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
spreadn: spread3, 
less_than': less_than'(a;b)
, 
true: True
, 
isr: isr(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
ext-eq: A ≡ B
, 
unit: Unit
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ext-family: F ≡ G
, 
pi1: fst(t)
, 
nat_plus: ℕ+
, 
W-rel: W-rel(A;a.B[a];w)
, 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w)
, 
pcw-steprel: StepRel(s1;s2)
, 
pi2: snd(t)
, 
isl: isl(x)
, 
pcw-step-agree: StepAgree(s;p1;w)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
sq_stable: SqStable(P)
Lemmas referenced : 
proof-tree_wf, 
list_wf, 
unit_wf2, 
and_wf, 
equal_wf, 
pi1_wf, 
false_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
W-elimination-facts, 
subtype_rel_self, 
subtract_wf, 
nat_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
top_wf, 
less_than_wf, 
true_wf, 
add-subtract-cancel, 
itermAdd_wf, 
int_term_value_add_lemma, 
W-ext, 
param-co-W-ext, 
it_wf, 
param-co-W_wf, 
pcw-steprel_wf, 
subtype_rel_dep_function, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_function, 
int_seg_subtype, 
sq_stable__le, 
all_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
productEquality, 
unionEquality, 
universeEquality, 
lambdaFormation, 
lambdaEquality, 
applyEquality, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
cumulativity, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
strong_bar_Induction, 
instantiate, 
functionExtensionality, 
dependent_set_memberEquality, 
lessCases, 
axiomSqEquality, 
imageMemberEquality, 
baseClosed, 
addEquality, 
int_eqReduceTrueSq, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
dependent_pairEquality, 
inlEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].
\mforall{}[pf:proof-tree(Sequent;Rule;effect)].
    (correct\_proof(Sequent;effect;s;pf)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-11_06_31
Last ObjectModification:
2018_08_21-PM-01_58_30
Theory : general
Home
Index