Nuprl Lemma : correct_proof_wf

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent].
[pf:proof-tree(Sequent;Rule;effect)].
  (correct_proof(Sequent;effect;s;pf) ∈ ℙ)


Proof




Definitions occuring in Statement :  correct_proof: correct_proof(Sequent;effect;s;pf) proof-tree: proof-tree(Sequent;Rule;effect) list: List uall: [x:A]. B[x] prop: unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proof-tree: proof-tree(Sequent;Rule;effect) all: x:A. B[x] correct_proof: correct_proof(Sequent;effect;s;pf) Wsup: Wsup(a;b) so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T subtype_rel: A ⊆B pcw-pp-barred: Barred(pp) nat: ge: i ≥  cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 less_than': less_than'(a;b) true: True isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt ext-eq: A ≡ B unit: Unit it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B sq_type: SQType(T) le: A ≤ B sq_stable: SqStable(P)
Lemmas referenced :  proof-tree_wf list_wf unit_wf2 and_wf equal_wf pi1_wf false_wf int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma W-elimination-facts subtype_rel_self subtract_wf nat_properties itermSubtract_wf int_term_value_subtract_lemma lelt_wf top_wf less_than_wf true_wf add-subtract-cancel itermAdd_wf int_term_value_add_lemma W-ext param-co-W-ext it_wf param-co-W_wf pcw-steprel_wf subtype_rel_dep_function subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_function int_seg_subtype sq_stable__le all_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry sqequalRule axiomEquality extract_by_obid isectElimination isect_memberEquality because_Cache functionEquality productEquality unionEquality universeEquality lambdaFormation lambdaEquality applyEquality unionElimination independent_functionElimination natural_numberEquality cumulativity setElimination rename independent_isectElimination productElimination approximateComputation dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation imageElimination strong_bar_Induction instantiate functionExtensionality dependent_set_memberEquality lessCases axiomSqEquality imageMemberEquality baseClosed addEquality int_eqReduceTrueSq promote_hyp hypothesis_subsumption equalityElimination dependent_pairEquality inlEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].
\mforall{}[pf:proof-tree(Sequent;Rule;effect)].
    (correct\_proof(Sequent;effect;s;pf)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-11_06_31
Last ObjectModification: 2018_08_21-PM-01_58_30

Theory : general


Home Index