Nuprl Lemma : W-elimination-facts

A:Type. ∀B:A ⟶ Type. ∀w:W(A;a.B[a]).
  ((cw-step(A;a.B[a]) ∈ Type)
  ∧ (W-rel(A;a.B[a];w) ∈ n:ℕ ⟶ (ℕn ⟶ cw-step(A;a.B[a])) ⟶ cw-step(A;a.B[a]) ⟶ ℙ)
  ∧ (W(A;a.B[a]) ∈ Type)
  ∧ (W(A;a.B[a]) ⊆(pco-W ⋅))
  ∧ (∀n:ℕ. ∀s:ℕn ⟶ cw-step(A;a.B[a]).  (Barred(<n, s>) ∨ Barred(<n, s>))))
  ∧ (∀alpha:ℕ ⟶ cw-step(A;a.B[a]). ((∀n:ℕ(W-rel(A;a.B[a];w) alpha (alpha n)))  (alpha ∈ Path)))
  ∧ (∀[pp:n:ℕ × (ℕn ⟶ cw-step(A;a.B[a]))]. (Barred(pp) ∈ ℙ))
  ∧ (∀alpha:ℕ ⟶ cw-step(A;a.B[a]). ((∀n:ℕ(W-rel(A;a.B[a];w) alpha (alpha n)))  (↓∃n:ℕBarred(<n, alpha>))))
  ∧ (∀a:A. ∀x1:B[a] ⟶ W(A;a.B[a]). ∀n:ℕ+. ∀s:ℕn ⟶ cw-step(A;a.B[a]). ∀a1:A. ∀w1:b:B[a1] ⟶ (pco-W ⋅). ∀x:B[a1]. ∀a2:A.
     ∀z1:b:B[a2] ⟶ (pco-W ⋅).
       ((∀k:ℕn. (W-rel(A;a.B[a];<a, x1>(s k)))
        ((s (n 1)) = <⋅, <a1, w1>inl x> ∈ cw-step(A;a.B[a]))
        ((w1 x) = <a2, z1> ∈ (pco-W ⋅))
        (z1 ∈ B[a2] ⟶ W(A;a.B[a])))))


Proof




Definitions occuring in Statement :  W-rel: W-rel(A;a.B[a];w) W: W(A;a.B[a]) cw-step: cw-step(A;a.B[a]) pcw-pp-barred: Barred(pp) pcw-path: Path param-co-W: pco-W int_seg: {i..j-} nat_plus: + nat: it: subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q or: P ∨ Q and: P ∧ Q unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] inl: inl x subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] W: W(A;a.B[a]) param-W: pW subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] implies:  Q prop: pcw-path: Path nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] pcw-partial: pcw-partial(path;n) W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) cw-step: cw-step(A;a.B[a]) squash: T
Lemmas referenced :  cw-step_wf W-rel_wf W_wf param-co-W_wf top_wf all_wf pcw-path_wf unit_wf2 it_wf pcw-step-agree_wf false_wf le_wf squash_wf exists_wf nat_wf pcw-pp-barred_wf pcw-partial_wf pcw-pp-barred-W-decidable int_seg_wf W-path-lemma pcw-pp-barred-W subtype_rel_self pcw-step_wf W-path-lemma2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_pairFormation because_Cache setElimination rename setEquality cumulativity functionExtensionality isect_memberEquality voidElimination voidEquality functionEquality dependent_set_memberEquality natural_numberEquality dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w:W(A;a.B[a]).
    ((cw-step(A;a.B[a])  \mmember{}  Type)
    \mwedge{}  (W-rel(A;a.B[a];w)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]))  {}\mrightarrow{}  cw-step(A;a.B[a])  {}\mrightarrow{}  \mBbbP{})
    \mwedge{}  (W(A;a.B[a])  \mmember{}  Type)
    \mwedge{}  (W(A;a.B[a])  \msubseteq{}r  (pco-W  \mcdot{}))
    \mwedge{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]).    (Barred(<n,  s>)  \mvee{}  (\mneg{}Barred(<n,  s>))))
    \mwedge{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  cw-step(A;a.B[a])
              ((\mforall{}n:\mBbbN{}.  (W-rel(A;a.B[a];w)  n  alpha  (alpha  n)))  {}\mRightarrow{}  (alpha  \mmember{}  Path)))
    \mwedge{}  (\mforall{}[pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]))].  (Barred(pp)  \mmember{}  \mBbbP{}))
    \mwedge{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  cw-step(A;a.B[a])
              ((\mforall{}n:\mBbbN{}.  (W-rel(A;a.B[a];w)  n  alpha  (alpha  n)))  {}\mRightarrow{}  (\mdownarrow{}\mexists{}n:\mBbbN{}.  Barred(<n,  alpha>))))
    \mwedge{}  (\mforall{}a:A.  \mforall{}x1:B[a]  {}\mrightarrow{}  W(A;a.B[a]).  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]).  \mforall{}a1:A.  \mforall{}w1:b:B[a1]  {}\mrightarrow{}  (pco-W 
                                                                                                                                                                                            \mcdot{}).
          \mforall{}x:B[a1].  \mforall{}a2:A.  \mforall{}z1:b:B[a2]  {}\mrightarrow{}  (pco-W  \mcdot{}).
              ((\mforall{}k:\mBbbN{}n.  (W-rel(A;a.B[a];<a,  x1>)  k  s  (s  k)))
              {}\mRightarrow{}  ((s  (n  -  1))  =  <\mcdot{},  <a1,  w1>,  inl  x>)
              {}\mRightarrow{}  ((w1  x)  =  <a2,  z1>)
              {}\mRightarrow{}  (z1  \mmember{}  B[a2]  {}\mrightarrow{}  W(A;a.B[a])))))



Date html generated: 2019_06_20-PM-00_36_32
Last ObjectModification: 2018_08_08-AM-08_40_15

Theory : co-recursion


Home Index