Nuprl Lemma : W-path-lemma2

A1:Type. ∀B1:A1 ⟶ Type. ∀a:A1. ∀x1:B1[a] ⟶ W(A1;a.B1[a]). ∀n:ℕ+. ∀s:ℕn ⟶ cw-step(A1;a.B1[a]). ∀a1:A1.
w1:b:B1[a1] ⟶ (pco-W ⋅). ∀x:B1[a1]. ∀a2:A1. ∀z1:b:B1[a2] ⟶ (pco-W ⋅).
  ((∀k:ℕn. (W-rel(A1;a.B1[a];<a, x1>(s k)))
   ((s (n 1)) = <⋅, <a1, w1>inl x> ∈ cw-step(A1;a.B1[a]))
   ((w1 x) = <a2, z1> ∈ (pco-W ⋅))
   (z1 ∈ b:B1[a2] ⟶ W(A1;a.B1[a])))


Proof




Definitions occuring in Statement :  W-rel: W-rel(A;a.B[a];w) W: W(A;a.B[a]) cw-step: cw-step(A;a.B[a]) param-co-W: pco-W int_seg: {i..j-} nat_plus: + it: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> inl: inl x subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G implies:  Q top: Top subtype_rel: A ⊆B uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q respects-equality: respects-equality(S;T) int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True sq_stable: SqStable(P) guard: {T} squash: T cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) pi2: snd(t) pi1: fst(t) sq_type: SQType(T) W: W(A;a.B[a]) istype: istype(T)
Lemmas referenced :  param-co-W-ext unit_wf2 it_wf param-co-W_wf top_wf istype-void subtype-respects-equality cw-step_wf subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-int minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 nat_plus_wf add-mul-special zero-mul le-add-cancel-alt istype-le istype-less_than int_seg_wf W-rel_wf int_seg_subtype_nat subtype_rel_function int_seg_subtype sq_stable__le le_weakening2 subtype_rel_self W_wf istype-universe param-W-ext cw-pp-lemma nat_plus_subtype_nat subtype_rel_weakening param-W_wf W-ext subtype_base_sq unit_subtype_base equal-implies-member-param-W istype-top ext-eq_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule Error :lambdaEquality_alt,  hypothesisEquality Error :universeIsType,  because_Cache applyEquality dependent_functionElimination Error :equalityIstype,  Error :isect_memberEquality_alt,  voidElimination Error :dependent_pairEquality_alt,  Error :functionIsType,  productEquality functionEquality independent_isectElimination productElimination independent_functionElimination Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  setElimination rename natural_numberEquality independent_pairFormation unionElimination addEquality minusEquality equalityTransitivity equalitySymmetry Error :productIsType,  imageMemberEquality baseClosed imageElimination instantiate universeEquality applyLambdaEquality cumulativity functionExtensionality Error :inlEquality_alt,  Error :unionIsType,  hypothesis_subsumption

Latex:
\mforall{}A1:Type.  \mforall{}B1:A1  {}\mrightarrow{}  Type.  \mforall{}a:A1.  \mforall{}x1:B1[a]  {}\mrightarrow{}  W(A1;a.B1[a]).  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  cw-step(A1;a.B1[a]).
\mforall{}a1:A1.  \mforall{}w1:b:B1[a1]  {}\mrightarrow{}  (pco-W  \mcdot{}).  \mforall{}x:B1[a1].  \mforall{}a2:A1.  \mforall{}z1:b:B1[a2]  {}\mrightarrow{}  (pco-W  \mcdot{}).
    ((\mforall{}k:\mBbbN{}n.  (W-rel(A1;a.B1[a];<a,  x1>)  k  s  (s  k)))
    {}\mRightarrow{}  ((s  (n  -  1))  =  <\mcdot{},  <a1,  w1>,  inl  x>)
    {}\mRightarrow{}  ((w1  x)  =  <a2,  z1>)
    {}\mRightarrow{}  (z1  \mmember{}  b:B1[a2]  {}\mrightarrow{}  W(A1;a.B1[a])))



Date html generated: 2019_06_20-PM-00_36_29
Last ObjectModification: 2018_11_23-PM-03_54_16

Theory : co-recursion


Home Index