Nuprl Lemma : param-W-ext
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
  pW ≡ λp.(a:A[p] × (b:B[p;a] ⟶ (pW C[p;a;b])))
Proof
Definitions occuring in Statement : 
param-W: pW, 
ext-family: F ≡ G, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-family: F ≡ G, 
all: ∀x:A. B[x], 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
param-W: pW, 
implies: P ⇒ Q, 
squash: ↓T, 
pcw-path: Path, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
exists: ∃x:A. B[x], 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
pcw-step-agree: StepAgree(s;p1;w), 
spreadn: spread3, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
pi1: fst(t), 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
ge: i ≥ j , 
int_upper: {i...}, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_stable: SqStable(P), 
subtract: n - m, 
top: Top, 
true: True, 
eq_int: (i =z j), 
cand: A c∧ B, 
pcw-steprel: StepRel(s1;s2), 
nequal: a ≠ b ∈ T , 
pcw-pp-barred: Barred(pp), 
pcw-partial: pcw-partial(path;n), 
isr: isr(x), 
pW-sup: pW-sup(a;f)
Lemmas referenced : 
param-co-W_wf, 
param-W_wf, 
param-co-W-ext, 
pcw-step-agree_wf, 
istype-void, 
le_wf, 
pcw-path_wf, 
squash_wf, 
exists_wf, 
nat_wf, 
pcw-pp-barred_wf, 
pcw-partial_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
unit_wf2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
zero-add, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-one-mul, 
minus-one-mul-top, 
istype-int, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
pcw-steprel_wf, 
add-zero, 
le_antisymmetry_iff, 
int_subtype_base, 
general_arith_equation1, 
not-equal-2, 
less-iff-le, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__lt, 
not-lt-2, 
minus-zero, 
le-add-cancel-alt, 
pW-sup_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
applyEquality, 
cumulativity, 
functionExtensionality, 
because_Cache, 
Error :inhabitedIsType, 
hypothesis, 
Error :productIsType, 
Error :functionIsType, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
Error :isect_memberEquality_alt, 
universeEquality, 
setElimination, 
rename, 
hypothesis_subsumption, 
Error :dependent_pairEquality_alt, 
Error :functionExtensionality_alt, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
Error :inlEquality_alt, 
Error :unionIsType, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
voidElimination, 
addEquality, 
minusEquality, 
intEquality, 
hyp_replacement, 
applyLambdaEquality, 
Error :equalityIsType4
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    pW  \mequiv{}  \mlambda{}p.(a:A[p]  \mtimes{}  (b:B[p;a]  {}\mrightarrow{}  (pW  C[p;a;b])))
Date html generated:
2019_06_20-PM-00_35_51
Last ObjectModification:
2018_10_02-AM-10_40_38
Theory : co-recursion
Home
Index