Nuprl Lemma : general_arith_equation1
∀[b:ℤ]. ∀[a,c:Top].  ((a - b) + c ~ (a + c) - b)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
top: Top
Lemmas referenced : 
top_wf, 
add-commutes, 
add-associates
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
voidElimination, 
voidEquality, 
minusEquality
Latex:
\mforall{}[b:\mBbbZ{}].  \mforall{}[a,c:Top].    ((a  -  b)  +  c  \msim{}  (a  +  c)  -  b)
Date html generated:
2016_05_13-PM-03_39_09
Last ObjectModification:
2015_12_26-AM-09_41_16
Theory : arithmetic
Home
Index