Nuprl Lemma : param-co-W-ext
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
  pco-W ≡ λp.(a:A[p] × (b:B[p;a] ⟶ (pco-W C[p;a;b])))
Proof
Definitions occuring in Statement : 
param-co-W: pco-W
, 
ext-family: F ≡ G
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
param-co-W: pco-W
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
ext-family: F ≡ G
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
sub-family: F ⊆ G
, 
isect-family: ⋂a:A. F[a]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
family-monotone: family-monotone{i:l}(P;H)
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
corec-family-ext, 
nat_wf, 
false_wf, 
le_wf, 
pair-eta, 
equal_wf, 
subtype_rel_self, 
subtype_rel_wf, 
subtype_rel_product, 
subtype_rel_dep_function, 
sub-family_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
isectEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
dependent_pairEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    pco-W  \mequiv{}  \mlambda{}p.(a:A[p]  \mtimes{}  (b:B[p;a]  {}\mrightarrow{}  (pco-W  C[p;a;b])))
Date html generated:
2017_04_14-AM-07_41_57
Last ObjectModification:
2017_02_27-PM-03_13_44
Theory : co-recursion
Home
Index