Nuprl Lemma : param-co-W-ext

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
  pco-W ≡ λp.(a:A[p] × (b:B[p;a] ⟶ (pco-W C[p;a;b])))


Proof




Definitions occuring in Statement :  param-co-W: pco-W ext-family: F ≡ G uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T param-co-W: pco-W so_apply: x[s] so_apply: x[s1;s2] so_apply: x[s1;s2;s3] uimplies: supposing a and: P ∧ Q cand: c∧ B ext-family: F ≡ G all: x:A. B[x] ext-eq: A ≡ B subtype_rel: A ⊆B type-family-continuous: type-family-continuous{i:l}(P;H) sub-family: F ⊆ G isect-family: a:A. F[a] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top pi1: fst(t) pi2: snd(t) family-monotone: family-monotone{i:l}(P;H) so_lambda: λ2x.t[x] guard: {T}
Lemmas referenced :  corec-family-ext nat_wf false_wf le_wf pair-eta equal_wf subtype_rel_self subtype_rel_wf subtype_rel_product subtype_rel_dep_function sub-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality productEquality applyEquality functionExtensionality cumulativity functionEquality universeEquality independent_isectElimination independent_pairFormation hypothesis sqequalRule dependent_functionElimination productElimination independent_pairEquality axiomEquality isect_memberEquality because_Cache lambdaFormation isectEquality dependent_set_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry voidElimination voidEquality independent_functionElimination dependent_pairEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    pco-W  \mequiv{}  \mlambda{}p.(a:A[p]  \mtimes{}  (b:B[p;a]  {}\mrightarrow{}  (pco-W  C[p;a;b])))



Date html generated: 2017_04_14-AM-07_41_57
Last ObjectModification: 2017_02_27-PM-03_13_44

Theory : co-recursion


Home Index