Nuprl Lemma : corec-family-ext
∀[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  corec-family(H) ≡ H corec-family(H) supposing type-family-continuous{i:l}(P;H) ∧ family-monotone{i:l}(P;H)
Proof
Definitions occuring in Statement : 
corec-family: corec-family(H)
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
family-monotone: family-monotone{i:l}(P;H)
, 
ext-family: F ≡ G
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
ext-family: F ≡ G
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
ext-family-iff, 
corec-family_wf, 
sub-corec-family, 
corec-sub-family, 
and_wf, 
type-family-continuous_wf, 
family-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
instantiate, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    corec-family(H)  \mequiv{}  H  corec-family(H) 
    supposing  type-family-continuous\{i:l\}(P;H)  \mwedge{}  family-monotone\{i:l\}(P;H)
Date html generated:
2016_05_14-AM-06_12_25
Last ObjectModification:
2015_12_26-PM-00_06_07
Theory : co-recursion
Home
Index