Nuprl Lemma : corec-family-ext

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  corec-family(H) ≡ corec-family(H) supposing type-family-continuous{i:l}(P;H) ∧ family-monotone{i:l}(P;H)


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) type-family-continuous: type-family-continuous{i:l}(P;H) family-monotone: family-monotone{i:l}(P;H) ext-family: F ≡ G uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) cand: c∧ B ext-family: F ≡ G all: x:A. B[x] ext-eq: A ≡ B subtype_rel: A ⊆B prop:
Lemmas referenced :  ext-family-iff corec-family_wf sub-corec-family corec-sub-family and_wf type-family-continuous_wf family-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis applyEquality independent_isectElimination because_Cache independent_pairFormation sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality axiomEquality instantiate isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    corec-family(H)  \mequiv{}  H  corec-family(H) 
    supposing  type-family-continuous\{i:l\}(P;H)  \mwedge{}  family-monotone\{i:l\}(P;H)



Date html generated: 2016_05_14-AM-06_12_25
Last ObjectModification: 2015_12_26-PM-00_06_07

Theory : co-recursion


Home Index