Nuprl Lemma : type-family-continuous_wf

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].  (type-family-continuous{i:l}(P;H) ∈ ℙ')


Proof




Definitions occuring in Statement :  type-family-continuous: type-family-continuous{i:l}(P;H) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-family-continuous: type-family-continuous{i:l}(P;H) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  uall_wf nat_wf sub-family_wf isect-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesis hypothesisEquality universeEquality lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    (type-family-continuous\{i:l\}(P;H)  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_14-AM-06_12_17
Last ObjectModification: 2015_12_26-PM-00_06_11

Theory : co-recursion


Home Index