Nuprl Lemma : sub-family_wf

[P:Type]. ∀[F,G:P ⟶ Type].  (F ⊆ G ∈ ℙ)


Proof




Definitions occuring in Statement :  sub-family: F ⊆ G uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sub-family: F ⊆ G so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  all_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[P:Type].  \mforall{}[F,G:P  {}\mrightarrow{}  Type].    (F  \msubseteq{}  G  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_12_08
Last ObjectModification: 2015_12_26-PM-00_06_16

Theory : co-recursion


Home Index