Nuprl Lemma : isect-family_wf

[P,A:Type]. ∀[F:A ⟶ P ⟶ Type].  (⋂a:A. F[a] ∈ P ⟶ Type)


Proof




Definitions occuring in Statement :  isect-family: a:A. F[a] uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isect-family: a:A. F[a] so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality isectEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[P,A:Type].  \mforall{}[F:A  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    (\mcap{}a:A.  F[a]  \mmember{}  P  {}\mrightarrow{}  Type)



Date html generated: 2016_05_14-AM-06_12_05
Last ObjectModification: 2015_12_26-PM-00_06_18

Theory : co-recursion


Home Index