Nuprl Lemma : family-monotone_wf

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].  (family-monotone{i:l}(P;H) ∈ ℙ')


Proof




Definitions occuring in Statement :  family-monotone: family-monotone{i:l}(P;H) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T family-monotone: family-monotone{i:l}(P;H) so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf sub-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    (family-monotone\{i:l\}(P;H)  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_14-AM-06_12_15
Last ObjectModification: 2015_12_26-PM-00_06_12

Theory : co-recursion


Home Index